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Abstract—Recent research has focused on sampling online 
social networks (OSNs) using traditional Markov Chain Monte 
Carlo (MCMC) techniques such as the Metropolis-Hastings 
algorithm (MH). While these methods have exhibited some 
success, the techniques suffer from slow mixing rates by 
themselves, and the resulting sample is usually approximate. 
An appealing solution is to apply the state of the art MCMC 
technique, Coupling From The Past (CFTP), for perfect 
sampling of OSNs. In this initial research, we explore 
theoretical and methodological issues such as customizing the 
update function and generating small sets of non-trivial states 
to adapt CFTP for sampling OSNs. Our research proposes the 
possibility of achieving perfect samples from large and 
complex OSNs using CFTP. 

Keywords-Sampling; Online Social Networks; Markov Chain 
Monte Carlo, Coupling From The Past. 

I.  INTRODUCTION 
Analyzing or Mining Online Social Networks (OSN) has 

become one of the most pressing problems of modern-day 
data mining. This is due to the exponential growth of these 
networks, which are becoming increasingly popular (e.g., 
Facebook, Twitter, Linkedln and cellular networks) and 
include more and more information that can be useful for 
commercial purposes, management issues, and even for 
defense and security applications. 

However, the task for Social Network Analysis has been 
limited because the size of online networks is 
overwhelming. For example, the Facebook network takes up 
hundreds of terabytes of memory storage. The volume of 
information is expanding on a daily basis as more and more 
people join the service or post information. Processing it 
remains a daunting task. The only way that any kind of 
analysis can be made possible is by sampling from the huge 
network and working on this sample. Recent research has 
shown that this can be achieved by crawling OSNs to find a 
relatively small representative sample suitable for studying 
properties and testing algorithms on OSNs [8][9]. 

A number of existing techniques for crawling include 
Breadth First Search (BFS) [9] and Random Walk (RW). 
While such techniques usually yield a bias toward the most 
highly connected nodes [8][9], the main result is that 
crawling using the traditional Metropolis-Hastings 
algorithm (MH), which is a typical Monte Carlo Markov 
Chain (MCMC) technique, can create unbiased samples 
suitable for the problem of Social Network Analysis [8]. 

However, MCMC techniques such as the MH algorithm 
come with significant challenges: significant burn-in lengths 
(the number of steps of a chain to reach stationarity) and 
correlation with the initial node choice. This usually leads to 
slow mixing, i.e., a large ������� 	 
���� ���� � �� , 
where ���� is the distance from stationarity. For example, 
recent research has shown that the Metropolis-Hastings 
Random Walk (MHRW) algorithm can produce unbiased 
samples of Facebook by randomly requesting 84k samples 
for convergence after discarding the burn-in length 6k. On 
the other hand, various convergence diagnostic methods 
[1][2][7][12] such as Geweke Diagnostic [6] cannot 
guarantee the chain has converged to a sample value from 
the desired distribution. Therefore, the sample, e.g., 78k,  
obtained by such MCMC algorithm is usually approximate. 

These issues behind the MH algorithm can be naturally 
overcome by using the state of the art Coupling From The 
Past (CFTP). In CFTP convergence is achieved by 
coalescence to a single state, which turns out to be a perfect 
sample from the stationary distribution. Therefore, issues of 
selecting proper convergence diagnostics are discarded 
[11][15][18]. While this technique is advanced, to the best 
of our knowledge, it has not applied in sampling OSNs.  

Our research shows that there are at least two crucial 
issues for this application. Firstly, the update function in 
CFTP is a random map, which defines how a state moves to 
a new state. Defining an effective update function is not 
trivial.  An improper update function might lead to failure to 
coalesce to a single state [15][19]. Secondly, the state space 
is usually unavailable for CFTP in advance of sampling. 
One has only a few initial nodes at the beginning for 
crawling. Even if the whole state space of OSNs is 
available, it is usually too huge to be used in CFTP. 

We investigate new techniques for sampling OSNs by 
using CFTP. We develop a new CFTP by designing a 
proper update function and generating small sets of non-
trivial states (rather than the whole state space). We reveal 
theoretical and methodological issues in this new technique. 
Our research result suggests that the standard CFTP 
technique can be successfully applied in sampling OSNs for 
perfect sampling. It is superior to other MCMC techniques 
such as the MHRW for sampling on large and complex 
networks, and the resulting sample is more suitable for 
social network analysis than other MCMC techniques. 
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II. RELATED WORK 

A. Techniques for Sampling Online Social Networks 
Sampling Online Social Networks (OSNs) can be 

achieved by crawling online social networks, producing a 
representative sample of users from the network suitable for 
conducting the analysis. In general, the crawling starts from 
an initial node and proceeds iteratively to visit all its 
neighbors. Several recently proposed methods for sampling 
OSNs are described as follows. 

The Breadth First Search (BFS) method, which is 
regarded as a graph traversal technique, explores the next 
node assuming the traditional Breadth First Search 
algorithm. It has been used practically for sampling OSNs in 
past research [9]. Recent research also shows that the 
method might densely cover only some specific region of 
the graph due to incomplete search. Further, this bias can be 
corrected by deriving an unbiased estimator of the original 
node degree distribution [9]. 

The Random Walk (RW) method chooses the next state 
w uniformly at random among the neighbors of the current 
node v. The transition probability can be defined as 

���� �� 	 � ��� � ����������� !"#�"$��%�����"� �#�����������������������  (1) 

where �� is the degree of v. 
Because the probability of the RW at the particular node 

v converges to &�'( ) ��, the RW sample nodes are biased 
towards high degree nodes. This bias may be corrected by an 
appropriate re-weighting of the measured value such as the 
Hansen-Hurwitz estimator [8].  

The Metropolis-Hastings Random Walk (MHRW) 
method [8], shown as below, appropriately modifies the 
transition probabilities so that it converges to the desired 
uniform distribution. The Metropolis-Hastings algorithm is a 
typical Markov Chain Monte Carlo (MCMC) technique for 
sampling from a probability distribution * . For sampling 
from the uniform distribution *� 	 +,-, , the transition 
probability can be defined as ���� ��
	
./0
/1 ��� 2 
�� 3�� ���(4 �����������$������������ !"#�"$���� 56 ���� 7�����$�� 	 �89� ������������������������������

%����������������������������������"� �#����������������������
 (2) 

Techniques for crawling using random walks are based 
on traditional Markov Chain Monte Carlo (MCMC) 
methods. Typically, the chain is started from an initial state, 
and it is run for some burn-in time long enough for the chain 
to have converged. The generated samples are assumed to be 
truly samples from the stationary distribution. Although 
various diagnostics such as Geweke Diagnostic and Gelman-
Rubin Diagnostic [8] can be used for assessing convergence, 
none of them guarantees that the chain has exactly 

converged. As a result, the samples are usually only 
approximate. It has been shown that the MHRW requires a 
large number of rejections during the initial sampling 
process, and the method is subject to slow mixing [8].  
 
 MHRW(v) 
 // v: initial node  
 while not converged do 
  � ) ���� !"#����), chosen uniformly at random 
  : ) ;�%��� 
  if : � <=<> then 
   � ? � 
  else 
   � ? � 
  end 

B. Coupling From The Past 
The CFTP algorithm, which was developed by Propp 

and Wilson [18], allows for perfect (exact) sampling from a 
desired distribution. It determines the burn-in time by 
ascertaining coalescence to a single value. Therefore, the 
issue of convergence diagnostic is ruled out. The 
fundamentals of the method can be described as follows. 

Let P be a transition probability that defines an ergodic 
Markov chain on state space @. The transition probability is 
associated with a random function representation, �#�A�B� 	 7� 	 ��B� 7�� (3) 

where B� 7 C �@. That is, the probability of A mapping B to 7 is equal to the transition probability ��B� 7� in the Markov 
chain. 

Assume that �+ and �D  are two time steps from the 
Markov chains. The composite map  EFGFH , which describes 
evolution of Markov chains from  �+to �D given any initial 
state B, can be defined as 

EFGFH�B� 	 IAFHJ+ K AFHJD KLLLK AFGM�B� 
	 3AFHJ+ NAFHJDILLL AFG�B� LLLMO4, PB C @. 

(4) 

Therefore, EQF  and EJFQ , where � R S , define forward 
coupling and backward coupling Markov chains, 
respectively. It has been observed [18] that the forward 
coupling does not necessarily produce a sample from the 
stationary distribution, and is subject to a bias due to 
changed coalescence time while the backward coupling 
produces an exact sample without any bias due to a fixed 
time for coalescence detection [4][18][19]. 

CFTP [18], shown as below, is a backward coupling 
technique for exact sampling. It assumes an ergodic Markov 
chain with  discrete and finite state space @ of size N. CFTP 
runs N copies of the chain from the past, where each copy 
corresponds to a different initial state. The chains will 
eventually coalesce to a steady state by time t = 0. 
Therefore, the effect of initial states in the Markov chains is 
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ruled out. This steady state is a perfect sample from the 
stationary distribution.  

For simulation of coupling from the infinite past, CFTP 
runs the N chains starting at � 	 5� and are checked for 
coalescence at � 	 %. If the coalescence occurs, the single 
state of the chains at � 	 %  is accepted as an effective 
sample from the stationary distribution & . Otherwise, the 
starting time is moved back to � 	 T� and the procedure is 
repeated until coalescence occurs. 

Other algorithms for perfect sampling have been 
proposed in the literature. Fill's perfect rejection sampling 
algorithm [5] is based on rejection sampling, and can be 
interrupted at any time during the simulation without 
introducing any bias to the generated samples. The output of 
the algorithm is independent of the running time. The state 
space, however, is assumed to be finite and partially ordered 
with minimal and maximal states. Beyond finite state 
spaces, Murdoch and Green [15][17] have developed the 
standard CFTP into a continuous state space. 

Instead of a perfect sample by singly running CFTP, a 
collection of sufficient number of independent perfect 
samples can be obtained by independently running the 
standard CFTP. This requires a large computational effort, 
and obtains a single sample in each CFTP. However, 
independent random streams with different random seeds 
could be a problem. Read-Once CFTP [20] can produce 
perfect samples by running the standard CFTP with a read-
once random sequence stream and no re-use of the 
previously generated random numbers. Alternative methods 
such as Repeated CFTP [3][16] make use of the generated 
values using the CFTP for inference on exact samples with 
some degree of dependency.  

 
CFTP algorithm 
Input @: state space 
Output X0: singleton state 
begin 
 � 	 5�� �Q 	 % 
 repeat 
  UVW+� UJVWD� X � UVY ) ;�%��� 
  � 	 �� Z[ 	 @ 
  while � \ % 
   Z[W+ 	 A�Z[� U[W+� 
   � 	 � ] � 
  �Q 	 �� � 	 T� 
 until ,ZQ, 	 � 
end 

 
To the best of our knowledge, CFTP has not been used 

for sampling OSNs in practice. We are motivated to apply 
CFTP for perfect sampling from online OSNs. 

There are several crucial issues for success of  practical 
applications of CFTP. The first is how to define the update 
function AF for evolution of Markov chains when only the 
local transition probability P is available. The update 
function is also called a random map, which is just a random 

function representation of P as described above. An invalid AF might lead to failure of coalescence in CFTP. Secondly, 
those AF�� ^ 	 5S�X �% , should be i.i.d generated for 
building the composite map E[Q . This can be achieved by 
defining a random vector U[� � 	 5��5� ] ��X�5 ��%� 
generated uniformly at random from U(0,1). Moreover, 
random numbers Rt generated in the previous iterations must 
be re-used. Thirdly, instead of the whole state space @, it is 
desired to identify a small state space @_, which would not 
be trivial when sampling from large online social networks. 

III. SAMPLING ONLINE SOCIAL NETWORKS USING CFTP 
Two key issues for defining the update function and 

generating small sets of the whole state space will be 
discussed in this section. We, thus, develop a new algorithm 
using CFTP for sampling OSNs. 

A. Update Function 
The update function A is defined as follows: Z[W+ 	 A�Z[� U[W+�� (5) 

where U[W+ ) ;�%��� and Z[� Z[W+ ` @. 
In more details, the update function maps a set of nodes Z[ to a new set of nodes Z[W+. Each node in Z[ is mapped 

to a new adjacent node based on the probability of the 
transition. For a graph, the probability of transition is 
typically a global property. Which adjacent node to select is 
determined by the random parameter U[W+a  The update 
function A�� �  can be written in terms of a range �Ubc(d'� Ueffd'g  for which the transition will occur. As 
discussed in Section II(B), the probability of A mapping x 
to one of its neighbors using the update function is equal to 
the transition probability. The key property of the update 
function A�Z[� U[W+�  is that it be deterministic in U[W+ . 
Given a set of initial states ZJVand a Markov Chain UJV , UJVW+� X � UJ+� UQ , where � h %, the set of states, nodes, 
and paths is completely deterministic. 

For OSNs it is possible to estimate the update function A�Z[� U[W+�  for each node B C Z[  based on the adjacent 
nodes. There are two common methods for calculating the 
update function A�� �  in OSNs: Random Walk and 
Metropolis-Hastings [13]. 

For each node B�  with degree �� , we denote the set of 
adjacent nodes as iB��jkl C m%� �� 5 �no . In the Random 
Walk (RW), where each adjacent node is equally likely, the 
probability of transitioning to a  node is 

�IB�� BjM 	 ���  (6) 

and the update function can be given by 

A�B�� U[W+� 	 B��j� �$ U[W+ C 3 l�� � l ] ��� pa (7) 

Metropolis-Hastings (MH) modifies the probability �IB�� B��jM to be 
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�IB�� B��jM 	 
�� q��� � ����jr� (8) 

where ���j  is the degree of the adjacent node B��j. The MH 
allows for self transition with the probability being  

�IB�� B��jM 	 � 56�IB�� B��jMj a (9) 

Then the update function is given by A�B�� U[W+�
	
./0
/1B��j��$�U[W+ C q6 �IB�� B��<MjJ+

<sQ �6 �IB�� B��<Mj
<sQ t�

B����$�U[W+ C q6 �IB�� B��jMj � �t������������������ (10)

Example 1. Given a toy example used in the previous 
research [4][19], as shown in Figure. 1, we show how to 
define the update function using the MH method for CFTP. 

The toy example describes a directed graph network. 
Instead of estimating the transition probabilities using the 
degrees of the node and its adjacent nodes, it typically has 
defined the global transition probabilities of the chain. 
Therefore, given the current state 1 the update function is 
actually estimated by using (10) as follows. 

Auv��� 	 �%� wx�yFW+ C �%� %azn���T� wx�yFW+ C �%az� %a{n�� wx�yFW+ C �%a{� �n��� 
The update function for other states can be estimated in 

the same way using the MH. The results are omitted due to 
the simplicity. 

 

B. Non-trivial State Space 
The standard CFTP constructs a global coupling with 

full copies of the chain from each state in @ for producing a 
perfect sample. Given a large state space, this global 
coupling is prohibitive at the cost of computational time and 
space.  

According to the definition the stationary distribution &, 

P7 C @� &�7� 	 6&�B���B� 7�a�C@  

Given a large state space @ and a target state 7 C @,  it is 
believed that a number of states x are independent of y such 
that |@_ } @, 

&�7� 	 6 &�B���B� 7�a�C@~  

This implies that the stationary value &�7� might only be 
associated with a few states from a small non-trivial state 
space @_. Coupling chains from only these initial states in @_ 
is sufficient to coalesce to a perfect sample. 

The idea behind a small state space has been introduced 
in the literature [14]. A set @_ } @ is called a small set of 
order 
 if there exists an 
 h %, and a non-trivial measure �� on @, such that for all B C @_ and P� ` @, ���B� �� ������. The central result is that small sets exist for any 
Markov chain, and then a collection of small sets can be 
used for exploring the whole state space @. We discuss this 
kind of small sets in the context of coupling techniques as 
follows. 

The update function, as shown in (5), defines a random 
map, which is a deterministic function, AF�B�� @ R @ (11) 

In essence, AF and EFGFH can define a limited random map 
as 

AF�B�� E[G[H�B�� @_ R @ (12) 

This non-trivial state space @_ can be formally defined as 
follows.  
Definition 1. Given A�@� U[�, denoted as AF�@�, and the 
composite function  

EFGFH�B� 	 IAFHJ+ K AFHJD KLLLK AFGM�B�, 
where �+ \ �D and PB C @, if �D 5 �+ is sufficient large, s.t., EFGFH�B� ` @_ ` @, then @_ is called a non-trivial state space 
with respect to �D. 

A not-trivial state space @_ is a small set of @. Simply, @ 
is also a non-trivial state space by itself. One may expect 
that EJ�Q �@_� can coalesce to an exact sample from & given 
M. This can be justified by the following theorem. 
Theorem 1. EJ�Q �@_� has the same distribution as &. 
Proof: For �+ \ �, we have 

EJ[Q 	 EJ[GQ K EJ[J[GJ+a 
If EJ�Q �@_�  is a constant function, then for all sufficient 
large � h � , from the assumption that @_  is a non-trivial 
state space for 5� 5 �, EJ[J�J+�@� �` @_a (14) 

and 

0 1 2 3

0.6 0.4 0.4 0.4 0.4 0.2 

0.4 0.4 0.4 

0.2 0.2 

Figure 1.  States of the Markov chain in the toy examples.
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EJ[Q �@� 	 EJ�Q K EJ[J�J+�@� 	 EJ�Q �@_�a 
This shows that output of EJ�Q �@_� is the same as the 

output of EJ�Q �@� as � R S. Note that  �w�[R���EJ[Q �B� 	 7� 	 &�7�a 
Therefore, the theorem is proven. � 
 
Consider (14) as � R S, it is equivalent to say that the 

backward coupling from the state space @ "coalesces" to a 
non-trivial state space @_ instead of a single state. This lets 
us design an algorithm to generate a non-trivial state space 
given initial states ZQ. 

We propose the Non-Trivial State Space algorithm 
(NTSS) to generate a non-trivial state space for some initial 
states ZQ. Note that the standard CFTP produces a perfect 
sample by obtaining the coalescence of global coupling. 
Instead of only a single perfect sample, the idea behind 
NTSS is to adapt the CFTP algorithm to search for non-
trivial states given ZQ . The additional parameter �  is 
specified as the fixed step size for backward coupling rather 
than the doubling scheme used in the standard CFTP; it can 
be used to describe the distance between non-trivial states 
with a fixed time interval. The larger the length, the less 
their relationship is.  

In essence, the generated @_  is a customized small set 
covering ZQ, which usually contains a single state seed in 
practice. The purpose is to use the generated non-trivial 
state space for perfect sampling rather than those initial 
seeds ZQ.  
 
Non-Trivial State Space algorithm 
Input �: the size of non-trivial state space; ZQ: initial states; �: the fixed step size for backward coupling, e.g., � 	 5�; 
Output @_: a non-trivial state space w.r.t. ZQ 
begin 
 @_ 	 ZQ 
 � 	 �� �Q 	 % 
 repeat 
  UVW+� X � UVY�;�%��� 
   � 	 �� Z[ 	 @_ 
  while�� 5 �Q \ % 
   Z[W+ 	 A�Z[� U[W+� 
   � 	 � ] � 
  @_ 	 @_ � ZQ 
  �Q 	 �� � 	 � ] � 
 until ,@_, � ��  
end 
 
Example 2. Given the directed graph network and the states 
and the transition probabilities of the Markov chain, as 
shown in Example 1, there are only two initial states, 0 and 
1, covered by the dashed double circles. The NTSS is run 
with � 	 z and � 	 5T. We show how the NTSS produces 
a non-trivial state space of 0 and 1, as shown in Figure 2. 

 In the first iteration of the while loop in the NTSS, the 
generated random vector is mUJ+� UQn 	 m%a��%a�n . @_ 	%��� is not changed because no new state is found at � 	 %.  

In the second iteration of the while loop, the random 
vector is mUJ�� UJDn 	 m%a��%a�n, and @_ 	 %���T�.  

The process continues until the non-trivial state space @_ 
with the size � 	 z is obtained. This can take place as long 
as some random vector, e.g., mU[� �U[W+n 	 m%a�� %a�n , is 
drawn in later iterations of the while loop, at which point, A�T� %a�� 	 �� U[ C �%a���n. 

 

 
 

 
 

C. Online CFTP Algorithm 
According to the previous discussion, we propose the 

Online CFTP for perfect sampling on OSNs. The algorithm 
first generates a non-trivial state space @_ from given initial 
states X0 using the proposed NTSS. We assume that X0 only 
contains a single initial state without any loss of generality. 
Then the algorithm runs the standard CFTP with the 
customized update function defined in (7) or (10) for perfect 
sampling from @_. More details about the Online CFTP will 
be discussed in Section IV. 
 

3

2

3

2

1

0

3 

2 

3 

2 

1 

0 

3

2

1

0

UJ� 	 %a� UJD 	 %a� UJ+ 	 %a� UQ 	 %a�

1

00

1

Figure 2. Generating a non-trivial state space of 0 and 1 using 
the NTSS  on the toy example. 

Online CFTP algorithm
Input �: the total number of non-trivial states; ZQ : initial 
states consisting of some nodes as sample seeds from a given 
OSN, e.g., Facebook, etc; 
Output a single value in ZQ 
begin 
 @_ 	 ������� ZQ� ��, e.g., � 	 5� 
 � 	 5�� �Q 	 % 
 repeat 
  UVW+� UVWD� X � UVY ) ;�%��� 
  � 	 �� Z[ 	 @_ 
  while � \ % 
   Z[W+ 	 A�Z[� U[W+�, defined in (7) or (10) 
   � 	 � ] � 
  �Q 	 �� � 	 T� 
 until ,ZQ, 	 � 
end

270270

Authorized licensed use limited to: Marisol Bedoya. Downloaded on April 05,2022 at 14:57:04 UTC from IEEE Xplore.  Restrictions apply. 



 

IV. DISCUSSION 
As discussed above, to implement the Online CFTP 

algorithm for sampling OSNs, one of the crucial issues is to 
effectively design the update function in the Online CFTP. 
We further discuss some related important issues as follows. 

A. Comparison of Two Updation Functions 
Two common methods: RW and MH for probability 

transition exhibit quite different performance. The uniform 
method allows for a Markov chain evolving from the current 
state to the next new state with equal probability. The MH 
method heuristically estimates the probability distribution 
for transition of states in a Markov chain by estimating local 
density of nodes. Therefore, the MH can be more powerful 
than the uniform method in complex networks. 

B. Update Function for Self Transition 
The proposed update function is a function of a random 

variable and is govern by the transition probability of the 
node. Its probability is equal to the transition probability. 

However, it is observed that all Markov chains in the 
Online CFTP may stay at the current state at some time step � when the random number is large, e.g., U[ � � , from (10). 
This can be regarded as a failed update for coupling when 
the update function is used. One may want to avoid this kind 
of failure for fast coalescence in the Online CFTP. 

In practice, the backward coupling with the update 
function in (10) can be simulated using the Metropolis-
Hastings (MH) algorithm. However, failed updates might 
occur as well since the MH algorithm usually has a low 
acceptance rate. As a result, many of chains might not go 
fast forward. 

To this end, one can introduce a different random 
number U�� 	 U��B���which is associated with each state B� . U��B�� is used for updating U[ by 

U[ 	 �U[ ] U��� �$�U[ ] U�� � �U[ ] U�� 5 �� "� �#���� 

Therefore, this can be re-written as 

U[ 	 IU[ ] U��M ���a% (15) 

Because U[  in the right side of Equation (15) is a 
uniform random number on the interval (0, 1) and U��  is 
fixed for each B�, the resulting U[ in the left side of Equation 
(15) is also uniformly distributed on the interval (0,1) due to 
the liner transformation. This avoids self transitions 
occurring at the same time steps in all coupling chains when 
the update function in (10) is used. In essence, the resulting U[  is intended be different between states, and is still 
uniformly distributed for each state. 

C. Initialization of  Random Sequences 
In Online CFTP, the random sequence U[  is generated 

uniformly at random from�;�%���. With a different random 

seed, the used random generator for �U[  is initialized at the 
beginning of Online CFTP for a different random vector. As 
a result, the algorithm can produce different independent 
perfect samples with different random seeds. Online CFTP 
can be repeatedly run with each of the previously obtained 
perfect samples to generate as many independent perfect 
samples as needed.  

The method for independent perfect samples, as 
described above, is comparable with the Read-Once CFTP 
for independent perfect samples with a few random seeds. It 
is also superior to other algorithms such as Repeated CFTP 
(RCFTP) [3] for inferring perfect samples that might be 
dependent between them. 

D. Bounding Mixing time 
Social networks consists of nodes, which are indexed 

with their identifiers, denoted by integers of �-digits, e.g., � 	 �T on Twitter. A Markov chain on the state space @ 
consisting of all nodes of a social network is constructed as 
follows:  at time �, pick any neighbor 7 of B[  uniformly at 
random and a bit ! C %��� uniformly at random; if ! 	 %, B[W+ 	 B[; otherwise B[W+ 	 7.  

Because the indexes of nodes of social networks can be 
represented by n-bit binary string, the chain described above 
is equivalent to a simple random walk on the hypercube %����: pick a coordinate � C �� X � �� uniformly at random 
and a bit ! C %��� uniformly at random; set B� 	 !.  

Bounding the mixing time for a random walk on the 
hypercube can be analyzed by coupling [10], ���� 	 �I��"������Ma 

Similarly, the mixing time of our method can be 
bounded with a number related to the length of integers for 
indexes. Empirically, we show that Online CFTP can be 
efficiently implemented for sampling OSNs. 

V. OBSERVED MIXING TIME ON TWITTER 
A rapid mixing time is crucial for sampling OSNs. This 

requires that the coalescence time should be bounded within 
an acceptable amount. We conducted the first experiment to 
show empirically the mixing time of Online CFTP on 
Twitter. 

We ran two chains starting from two different initial 
states, which were generated using NTSS on Twitter, and 
are diverse by setting the fixed step size � 	 5�a We ran 7 
experiments by using different random sequences in NTSS 
for generating different small sets given the same initial 
state seed. We observed that the simulation steps, as shown 
in Table 1, are usually more than two thousand steps with 
the elapsed time over 6hs on average for a perfect sample. 

For comparison, people have adopted the MHRW 
algorithm to run 28 chains separately for sampling 
Facebook [8]. The Geweke diagnostic is applied in each of 
the 28 chains. The convergence is detected when all 28 
values fall in the [-1,1] interval. In general, after a long run, 
e.g., 500-2000 iterations, a z-score falls within the interval. 
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For analyzing all the 28 chains, the Gelman-Rubin 
diagnostic is used, and an R score is computed. It has been 
observed that after a long run, e.g., 3000 iterations, all the R 
scores drop below 1.02. Because the convergence detection 
is not precisely implemented, the resulting sample is 
obtained approximately by discarding the initial sample 
nodes before the mixing time. 

As we can see, the observed mixing time of Online 
CFTP from our first experiment on Twitter approximates to 
that of the MHRW algorithm on Facebook. On average, 
Online CFTP can exhibit the mixing time less than the 
MHRW by 2798 vs. 3000. 

 
Table 1. Simulation steps(observed mixing time<0) and elapsed 
time(s) for Online CFTP on Twitter 

Simulation steps Elapsed time 
-2048 9657.72 
-4096 40139.10 
-4096 17556.56 
-1024 8350.87 
-4096 9765.21 
-128 281.93 

-4096 50772.72 
-2798 19503.44 

 

VI. CONLCUSION AND FUTURE WORK 
In this research, we develop a new technique for 

sampling OSNs using CFTP. We discuss and analyze 
theoretical and methodological issues for this new technique. 
Two key issues are tackled. The update function is set by 
selecting either the RW or the MH methods, which are 
defined according to transition probabilities; the update 
function with the MH method is realized to be more robust 
than the update function with the RW method for sampling 
on complex networks. A small set of states from the whole 
state space, called non-trivial state space, can be generated 
by using the proposed Non-Trivial State Space algorithm. 
This is achieved by modifying the standard CFTP to search 
for non-trivial states with respect to some given initial state 
seeds. Finally, we propose the Online CFTP algorithm for 
sampling OSNs. Related issues such as producing 
independent perfect samples and bounding the mixing time 
using Online CFTP are discussed. The initial research results 
suggest that  the state of the art CFTP can be successfully 
applied in sampling OSNs. The results from our first 
experiment show that the proposed technique has an 
observed mixing time less than the previously proposed 
MCMC techniques such as the MHRW for sampling OSNs. 
There is still potential improvement in the new technique. 
Our future work will further explore the characteristics of the 

proposed approach, and show the quality of the resulting 
sample for various data mining tasks. 
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